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Abstract

Loop closing in vision based SLAM applications is a difficult task. Comparing

new image data with all previously acquired image data is practically impossible

because of the high computational costs. Most approaches therefore compare new

data with only a subset of the old data, for example by sampling the data over

time or over space by using a position estimate. In this paper we propose a more

natural approach, which dynamically determines a subset of images that best de-

scribes the complete image data in the space of all previously seen images. The

actual problem of finding such a subset is called the “Connected Dominating Set”

(CDS) problem which is well studied in the field of graph theory. Application on

large indoor datasets results in approximately the same map using only 13% of

the computational resources with respect to comparing with all previous images.

Also, it outperforms other sampling approaches. The proposed method is par-

ticularly beneficial for realistic mapping scenarios including moving objects and

persons, motion blur and changing light conditions1.
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1. Introduction1

Data association is a fundamental problem in the field of SLAM (Simultane-2

ous Localization And Mapping), where a global metric map is to be built incre-3

mentally from sensor data [2]. In most SLAM approaches it means that the most4
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1This is an extended version of the workshop paper [1]. All datasets and software used in the

experiments are available online.
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probable associations between sensor measurements and elements of the map have5

to be found. The problem is that time spent on finding these associations increases6

as the map is growing.7

In view based SLAM [2], the so called “map” consists of a trajectory of robot8

poses with their corresponding images. In this case perfect data association in-9

volves finding for each new image, all the previously acquired images that match10

it. Two images match if information can be extracted that is useful for updating11

the map, for example if the relative pose can be determined using epipolar ge-12

ometry estimation [3]. This is especially the case if loop closing is involved, in13

which mapping errors are decreased because a new image matches with an image14

taken some time ago. The effort necessary to find all these corresponding images15

grows linearly while the map is growing, making perfect data association practi-16

cally impossible for realistic mapping scenarios. In addition, a second problem17

is that even with a very robust matching technique, ambiguities will be present18

due to similar images taken in different parts of the environment. Solving these19

ambiguities is addressed by Rao Blackwellised Particle Filters [4] and the MCMC20

based approaches that search in the space of topological maps [5]. In this paper we21

focus on the first problem, which we call the data association problem: efficiently22

finding for each new image the matching previous images in a growing map.23

Data association for view based SLAM can be performed more efficiently24

by considering only a selection of previously acquired images for matching new25

images. The question is how to compare the smallest number of images, while still26

finding the largest number of matches. A natural approach is to use a hierarchical27

scheme, in which new images are first compared with a subset of key images that28

best represents the complete set of images in the global map. The results of these29

comparisons are then used to search more locally for image matches.30

However, it is unclear what constitutes a good representative subset of a col-31

lection of images. Parts in the environment where images are harder to match,32

for example because of bad lighting conditions, should be represented with more33

images, while parts where a lot of images match each other, need less. One could34

try to solve this by clustering the set of previously acquired images based on the35

matches that were found among them. Each cluster is then represented with one36

image. Because the matching function is usually not a metric, a spectral clustering37

method should be chosen. However, spectral methods are known to be complex38

and computational intensive. Also the question remains which images should be39

chosen to represent each cluster.40

In [6] we adopted an approach based on a graph representation of the image41

set. All previously matched images can be used to form a graph, in which the42
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nodes denote images and a link between two nodes denotes that the two images43

matched. In graph theory, the subgraph that contains the minimal number of nodes44

that still covers the complete graph is termed the “Connected Dominating Set”45

(CDS) [7]. In [8] we have shown that efficient robot localization can be performed46

by determining such a CDS to find a minimal set of images, that represents the47

complete set of images in an optimal way.48

In this paper we use this CDS method in an incremental hierarchical data as-49

sociation scheme. For a new image first the matching key images are determined,50

which are then used to search more locally for image matches. For each resulting51

match a link is added to the graph, which can be used to associate the next image.52

What results is an incremental mapping framework, that only compares pairs of53

images which have a high chance of matching. While the map is growing the set54

of key images dynamically changes by applying the CDS method for each added55

image.56

The question is if the proposed incremental data association scheme results in57

a comparable map as would result from an exhaustive data association scheme.58

This depends on the ability of the CDS method to indeed find a subset of images59

that represents the complete image set. Also, in this paper we investigate how the60

CDS method compares to other techniques of picking key images.61

We have put a focus on view based mapping, because image matching is62

known to be computationally expensive. Nevertheless, the proposed method can63

just as well be applied to mapping methods based on other sensors such as laser64

range scanners or even landmark based approaches.65

The rest of the paper is organized as follows. First, in Section 2, related work66

is discussed. Then, in Section 3, we propose the new data association approach67

based on the CDS. In Section 4 we briefly explain the image matching technique68

used in the experiments. In Section 5 the proposed method is evaluated on multi-69

ple challenging datasets, acquired in real home environments.70

2. Related work71

In various large mapping applications or image retrieval tasks efficient data72

association is achieved by using a fast yet simplistic image comparison method,73

such as in [9] and [10] where each image is described with a single image feature74

which can be compared very quickly. In [11] and [12] efficiency is obtained by75

quantifying local image feature in so called “visual words” and comparing for76

each image pair the number of corresponding words. Although these methods77

scale up to a large number of images, the computational time for data association78
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still increases linearly with the number of images. The method proposed in this79

paper results in less image comparisons, regardless of the method used to compare80

images. Indeed it can be combined with one of the mentioned efficient methods.81

In SLAM applications new robot positions in the map can be predicted given82

the motion model. It is very common to use this so called “navigation prior” to83

define parts of the map for data association [13, 14]. There are a few fundamental84

drawbacks with this approach. Due to linearization errors SLAM methods are85

usually overconfident. Because of this, crucial loop closing observations could be86

missed. In general the assumption that observations are independent does not hold87

and this leads to an even more overconfident state estimate. On the other hand, if a88

SLAM method uses a conservative state estimate, the number of possible images89

to match is again too large [15].90

It is indeed common to ignore the navigation prior when mapping environ-91

ments containing large loops [16, 12]. In this case, data association for SLAM,92

is the same as data association for vision based topological mapping [17, 18, 19].93

For small scale topological maps it is not necessary to reduce the data set be-94

cause exhaustive data association is still possible [18, 19]. For mapping larger95

environments it is common to subsample in time, for example use only one frame96

per second [17] or to uniformly sample over the space that is being mapped, for97

example by using odometry measurements [20, 21].98

These methods assume that the change in appearance is proportional to change99

in time or space. In realistic mapping scenarios where light changes occur, hu-100

mans move, and the driving speed of the robot is not constant this assumption101

does not hold. Also, in small places such as corridors and door openings, the ap-102

pearance changes relatively faster than in big convex spaces such as large rooms.103

In this paper we argue that using the change in appearance which is measured104

when comparing the already mapped images, results in better data association. If105

necessary the proposed algorithm can also be combined with such sampling meth-106

ods, for example by first sampling in space and determining a set of key images107

given the CDS method from these sampled images.108

An approach that does use the matching result of images that are in the map109

for associating new images applies spectral clustering on the connectivity matrix110

of the graph of matches [22, 23]. Clustering results in a set of subgraphs each111

containing images which are visually similar, such as images taken in the same112

room [24]. Per cluster an image is picked, resulting in a set of key images [22,113

23]. However, solving a clustering problem is actually a more difficult and time114

consuming problem than the problem at hand, especially because the number of115

clusters is not known. In [25] finding clusters is simplified by only grouping116
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sequentially acquired images. The major drawback is that all images taken from117

the same place but at a different time are put in a different cluster. Indeed one118

of the assumptions is that each location is visited only once [25]. In [26] the119

problem is solved more elegantly by incrementally clustering the graph, resulting120

in an algorithm which is more closely related to the method we propose.121

Recently in [27] a method was proposed that only adds those images to the122

map that provide most information about the environment. An advantage of the123

approach is that the information gain is measured directly by inspecting the infor-124

mation matrix of the EIF (Extended Information Filter) based SLAM procedure.125

A drawback of the method is that once an image is added to the map, it can not be126

replaced by an even more informative image. The method we propose reconsiders127

at every iteration each previously acquired image to represent the image set.128

In the field of computer vision there is a growing interest in estimating the129

3D geometry of famous buildings or touristic sites from large sets of unordered130

data [28, 29]. The number of images is usually so large that it is not tractable131

to incorporate the relative poses between all image pairs. This problem is very132

much related to the SLAM problem discussed in this paper. In [28] an approach is133

used that is very similar to ours in which the Connected Dominating Set defines a134

skeletal graph that represents the complete graph. The CDS is computed only once135

from a graph that is obtained by computing point correspondences between each136

image pair. In our approach the graph is build incrementally, computing a new137

CDS for every new image, so we do not have to find correspondences between all138

image pairs.139

3. Incremental data association based on image similarity140

The map of the View based SLAM approach consists of the complete set of141

past robot poses and their matching images. In this section we propose a method142

to efficiently perform data association for such a mapping approach, comparing143

as few image pairs as possible. We do this by defining a set of key images using144

the Connected Dominating Set. Then these key images are used in a practical145

and efficient incremental data association scheme. We assume that a similarity146

measure is given that can take two images and computes if they are similar or147

not. Later in Section 4 we briefly describe the similarity measure used in the148

experiments.149
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3.1. The Connected Dominating Set150

For now we assume that we already mapped part of the environment and found151

pairs of robot poses for which the corresponding images matched. The problem is152

to compute a minimal set of key images that best represents the complete image153

set, given the set of matching image pairs.154

See Figure 1 for an example scenario. Suppose the robot moves to a position155

B close to a previous robot position C. If the world is more or less static, then a156

newly captured image at B looks a lot like the image taken at C. Thus the new157

image taken at B probably also matches all the images that matched the image158

taken at C. To close a loop in the map it suffices to compare the new image taken159

at B with only one of these matching images taken at D, E or F . Thus, to find the160

loop closing event at C, only one of these images, C, D, E or F , has to be marked161

as key image and the rest can be ignored.

F

B
C

D

E

A

Figure 1: Figure explaining the rationale of using the Connected Dominating Set method. The

circles denote robot poses and the links connecting them indicate that the images taken at the

robot poses match. Grey circles indicate CDS nodes. The robot moves from robot pose A to a new

robot pose B, which has to be associated with the map.

162

Of course, a loop closing can occur at all possible previous robot positions.163

It would suffice to compare the new image with a set of key images which has164

the property that every image either matched a key image or is a key image itself.165

This is exactly the definition of the Connected Dominating Set (CDS), a concept166

originating from graph theory, which is commonly used for broadcasting in large167

networks [7].168
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The set of all image pairs in the map can be seen as a graph G = (V, S), in

which a node v ∈ V represents an image and a link (u, v) ∈ S represents that the

two images which correspond to node u and v match. A Connected Dominating

Set V ′ is defined as follows. The set of nodes in the Dominating Graph V ′ is a

proper subset of the original set V , such that every node u in the original set V is

either in the Dominating Set V ′ or is neighboring a node in V ′:

∀u ∈ V : u ∈ V ′ ∨ ∃v ∈ V ′ : (u, v) ∈ S (1)

The problem now is to find a CDS with the minimal number of nodes so169

to compare as few images as possible. This task is however known to be NP-170

complete. Fortunately algorithms exist that can find a good approximation in the171

order of the number of nodes [7]. Most of these algorithms first remove links to172

make a spanning tree with as many leaves as possible and then define the set of all173

non-leaves as the CDS. Below we describe the algorithm used in the experiments.174

3.2. Approximation algorithm175

Guha and Khuller describe a number of algorithms that find a CDS with close176

to the minimum number of nodes using computational time in the order of the177

number of nodes in the graph [7]. We implemented one of these algorithms and178

modified it slightly so that it can cope with non connected graphs. This modifica-179

tion is needed for example because the graph is in rare occasions not connected,180

usually caused by a single image that did not match any other image, because the181

view of the camera was blocked by persons walking near the robot.182

The algorithm can be explained as follows, see also Figure 2:183

1. Color every node of the graph white (Figure 2(a)).184

2. Choose a white node with the highest number of neighbors.185

3. Color this node black and color all white neighboring nodes gray (Fig-186

ure 2(b)).187

4. Choose a gray node that has the most links leading to white nodes (Fig-188

ure 2(c)).189

5. If no such gray node exists, goto 2190

6. Goto 3 until there is no white node left.191

7. The black nodes now compose the Connected Dominating Set (Figure 2(d)).192

In [7] it is described how to implement this in O(#nodes).193

An extension of this algorithm described in [7] that sometimes colors two194

nodes black in one iteration, instead of just one, was also implemented. With this195
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Figure 2: A simple example describing the approximation algorithm.

extension one can prove a nice upper bound on the size of the CDS. However, pilot196

studies on small mapping problems showed that the resulting CDSs were always197

larger than the algorithm described above, and the extended version was therefore198

not used in the experiments.199

3.3. Incremental hierarchical data association200

For each new image that is taken by the robot a new CDS is determined. Com-201

paring the newly taken image with the images in the CDS, results in some extra202

image pairs, but more importantly it indicates where to look for more matching203

images. To determine as much matching image pairs as possible, the new image204

is compared with all the images that matched matching CDS images. Thus in the205

example of Figure 1 if the new measurement B matches CDS node E, then B is206

also matched with C, D and F.207

In case the robot always revisits previous locations then the CDS method re-208

turns the approximately optimal subset for localization. If the robot, however,209

drives through a corridor it could happen that it can not match any of the images210

in the CDS, since often the previously acquired image is not in the CDS. There-211

fore, we do not only compare with neighbors of matching CDS images but also212

the neighbors of all CDS images that matched the previously taken image. Pilot213

experiments have shown that this results in an increase of on average 9% of image214

comparisons. See Algorithm 1 for an overview of the data association scheme.215
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Algorithm 1 Incremental hierarchical data association scheme

graph G = (V, S) = ({}, {})
repeat

Take a new image Ic

Add current node c to graph V ← {V, c}
V’ = computeCDS(G)

for all CDS nodes v′ in V ′ do

if match(Iv′ , Ic) then
Add link: S ← {S, (v′, c)}

end if

end for

for all nodes v in V do

if there is a node v′ ∈ V ′ that links to v: (v, v′) ∈ S

and links to c or p: (v′, c) ∈ S ∨ (v′, p) ∈ S then

if match(Iv, Ic) then
Add link: S ← {S, (v, c)}

end if

end if

end for

Current node becomes previous node: p← c

until end of mapping
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4. Comparing images216

This section briefly describes the matching technique used to compare two217

images. For the CDS data association scheme any image comparison technique218

can be used, for example a fast hierarchical method [11] or a bag-of-words method219

that use training sets to learn how discriminative image features are [12]. In the220

experiments in this paper we used a method based on corresponding local image221

features and imposing the epipolar constraint [30].222

Images taken by an omnidirectional vision sensor are first mapped to pano-223

ramic images [31], from which feature points are found using the Scale Invariant224

Feature Transform (SIFT) [32]. Features are described by the standard SIFT de-225

scriptor of 128 dimensions.226

A set of point correspondences between two images is determined by applying227

the standard matching scheme as described in [32]. The number of point corre-228

spondences could be used to determine if the two images match. However, the set229

will also include mismatched image points pointing to different 3D landmarks.230

The point correspondences that are the projections of the same 3D point in the

environment are constrained by the epipolar geometry [33]. This epipolar geom-

etry is formally described by the Essential matrix E that relates the projections of

landmarks as 3D points li and ri on the camera surfaces:

l
T

i
Eri = 0 for all i, (2)

For omnidirectional vision li and ri are usually obtained by normalizing the 3D231

light rays, corresponding to the pixel coordinates, to unit length, effectively pro-232

jecting them on a sphere [31, 34].233

The 3x3 matrix E is estimated using a variant of the 8-point algorithm [35],234

for which the constraint is added that the camera moves over a planar surface [36].235

This algorithm is used inside the RANSAC robust estimator [37], which estimates236

the epipolar geometry and at the same time determines the number of fitting cor-237

respondences [35, 38]. A point correspondence fits E if it has a small Sampson238

distance [35, 38] and the corresponding 3D world point has a positive depth in239

both cameras [39].240

The number of remaining mismatches, fitting E, is proportional to the total241

number of features found in the two images. If the number of fitting point corre-242

spondences normalized by the lowest number of features found in the two images243

is larger than a certain threshold, then the images match. Pilot studies in an office244

environment with a threshold of 0.1 resulted in a lot of good matches and no false245

matches.246
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5. Experiments and results247

We evaluated the performance of the proposed CDS data association method248

on several realistic datasets. In the first experiment we compared our CDS data249

association method with the straightforward method in which every new image250

is compared with all previously taken images. In a second experiment the CDS251

method is compared with data association methods that use sampling over time or252

over space. Finally we focus on the event of loop closing and traversing a loop in253

the environment twice.254

5.1. Datasets, set-up and evaluation measures255

We used four datasets: an “office set” acquired in our university building, two256

“home sets” taken in real home environments2 and one “outdoor” set acquired in257

a typical suburb environment. For all these datasets, including the one taken at the258

university building, the conditions were far from ideal “lab conditions”, including259

bad lighting conditions, people walking close to the camera and scenes with a low260

amount of texture. Perhaps more important was the fact that within each dataset261

the conditions differed for different parts of the environment, see Figure 4.262

The office set (1754 images, 4 Hz) includes a hallway that is dark and has263

only few visual features, compared to the rest of the office environment, compare264

the images in Figure 4(a)-(b). The set is interesting because it shows how the265

proposed method copes with a robot traversing a same loop in the building twice.266

The first home set (1436 images, 5 Hz) is taken in a relatively feature rich267

home environment. However, the images were shot in the evening. This resulted268

in somewhat dark images and more importantly motion blur during sharp turns,269

because of the higher shutter times needed to capture bright enough images, com-270

pare the images in Figure 4(c)-(d).271

The second home set (2071 images, 7 Hz) was taken while people walked in272

close vicinity to the robot. The images were captured during day time with the273

blinds open, causing some images to be very bright (Figure 4(f)), while others not274

being in direct view of a window to be quite dark (Figure 4(e)).275

The outdoor set (826 images, 1 Hz) was acquired by a car driving through a276

suburb of Hoofddorp, The Netherlands. The lighting conditions were relatively277

good and the environment had plenty visual cues. However, the images contained278

a limited number of useful features, because a large part of the camera view was279

2The home sets, including images, odometry, sonar and laser range data (all timestamped), are

available from http://www2.science.uva.nl/sites/cogniron/.
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from the overcast sky or the roof of the car where the camera was mounted on (see280

Figure 4(g)).281

To get an idea of the structure of the environments see Figure 3. For a de-282

tailed description of the acquisition of the home datasets see [40]. All indoor283

datasets were acquired using a tele-operated Nomad Scout mobile robot platform,284

which was equipped with an omnidirectional vision system, consisting of an Ac-285

cowle convex hyperbolic mirror and a one megapixel Firewire video camera. The286

outdoor dataset was acquired using a car with the same omnidirectional vision287

system mounted on its roof [41]. The computer vision and data association algo-288

rithms were implemented in C++ and were running on a 2Ghz laptop mounted on289

the robot3.290

For evaluation we need to measure the speed-up of the proposed data associa-291

tion method with respect to an exhaustive data association scheme, as well as the292

amount of correct matches found. However, we do not want to evaluate the image293

comparison technique itself. Therefore we treat the results of the exhaustive data294

association scheme as the ground truth image matching data.295

The speed-up is now measured by the number of images comparisons the ex-296

haustive data association performed divided by the number of comparisons per-297

formed by the proposed method. In a similar fashion the amount of correct image298

matches found is measured by the number of images matches found by the pro-299

posed method divided by the number of matches found by exhaustive data associ-300

ation.301

Another interesting evaluation criterion is the percentage of image compar-302

isons that resulted in a match. This value tells something about the quantity of303

information that is gained per comparison. We call this value “efficiency” and use304

it for comparing different sampling approaches.305

5.2. Comparison to exhaustive data association306

On all four datasets, both the proposed data association method was applied,307

as well as an exhaustive data association scheme in which each new image was308

matched with all previously acquired images.309

The results of the CDS data association method are visualized in Figure 5 as310

connectivity graphs, linking the matching images and using hand corrected odom-311

etry and GPS information for the position of the image-nodes. Note, however, that312

3All software used in the experiments is available online at http://www.science.uva.

nl/research/isla/downloads/VisualMapping/index.html.
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(a) Office (b) Home 1

(c) Home 2
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Figure 3: Ground floor maps of the indoor environments and a satellite image of the outdoor

environment. The trajectory of the robot is indicated with the black line. The position of the

furniture is approximate.
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(a) Office, few features (b) Office many features

(c) Home 1, motion blur (d) Home 1, feature rich

(e) Home 2, dark (f) Home 2, bright

(g) outdoor

Figure 4: Example images taken by the omnidirectional vision system from the datasets. From

each indoor dataset there are two images. On the left there are images that are hard to match and

on the right images that are easy to match. In Figure 5 the positions of the robot are indicated

while taking these images.
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(a) Office (b) Home 1

(c) Home 2 (d) Outdoor

Figure 5: Results of CDS data association method. The graphs were plot using hand-corrected

odometry information. Circles denote the images of the final CDS. Lines were drawn between

poses to denote that the images corresponding to the two robot poses matched. The nodes indicated

with a “D” correspond to example images that are difficult to match, plotted in the left column of

Figure 4. Nodes indicated with an “E” are easy to match and plotted in the right column. By using

the zoom functions of a PDF reader parts can be magnified to fully respect the number of found

image matches, (for Acrobat 8.0 turn off Line Weights, for Acrobat 7.0 turn on Wireframe).
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Figure 6: Connectivity matrices of the final graphs of the Office set and the Home 2 set built

using the CDS method. Image pairs with a higher similarity are represented with darker pixels.

The entries on the main diagonals are the result of matching sequential images, while the off-

diagonal entries reflect instances of loop-closing.The “D” and “E” again indicate the difficult and

easy images shown in Figure 4
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Table 1: Comparison of data association based on the CDS and the Full data association, matching

every new image with all previous images. The number of images that are compared during map

building is much lower for the CDS method than for the Full method, resulting in a speed up of

data association (the number of compared by Full divided by the number of compared by CDS).

Nevertheless the percentage of matches found by the CDS method is close to 100% (matches

found by CDS divided by the matches found by Full).

Office Home 1 Home 2 Outdoor

#images 1754 1436 2071 826

Full
compared 1537381 1030330 2143485 340725

matched 92831 39631 66618 2219

CDS
compared 202334 108658 214881 151082

matched 91330 38397 64108 2198

speed up 759% 948% 997% 225%

% matches found 98% 97% 96% 99 %

the odometry information is not used by the proposed method. As can be seen for313

all datasets a lot of images matched. Figure 6 visualizes some of the resulting314

graphs found by the CDS method as connectivity matrices, which more clearly315

shows the loop closing image matches by the off-diagonal non-zero values.316

The connectivity graphs and connectivity matrices computed by using exhaus-317

tive data association are visually indiscernible from the ones computed using the318

proposed method and are therefore omitted.319

In Table 1 the results obtained with the CDS method are compared with the320

exhaustive data association. As can be seen the CDS method is on average 7321

times faster, determined by dividing the number of image comparisons done by322

the exhaustive method by the number of comparisons done by the CDS method.323

Nevertheless, the CDS method finds on average 97.6 % of the matches found by324

comparing with all images.325

In Figure 7 shows a more detailed plot of the number of image comparisons326

performed while the robot is mapping the office set. The other datasets resulted327

in similar plots. As can be seen the number of comparisons for the exhaustive328

data association scheme increases linearly with the number of images in the map.329

The number of comparisons performed by the CDS method barely increases. The330

resources used to determine the CDS itself is negligible compared to the time331
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Figure 7: Comparison of the number of images comparisons for each new image of the CDS data

association and the conventional brute force method while the map is growing. The fluctuations

in the graph of the CDS is mostly caused by the variable speed of the robot. When the robot is

moving slowly or moving on the spot, then relatively many images will match, see also Figure 6.

needed for the actual image matching. For all the datasets the computation time332

was always smaller than 10 ms.333

It is interesting to investigate the distribution of the key images over the com-334

plete set of images and the position from which they were taken. We highlight335

some of the characteristics parts of the home environments as depicted in Fig-336

ure 4 and discussed in Section 5.1. In the connectivity graphs (Figure 5) the robot337

positions of the example images are visualized with a “D”, for images that are338

difficult to match, and an “E”, for images that are easy to match. It is clear that in339

the neighborhood of the difficult images relatively more key images were picked340

than parts of the environment where good images were acquired.341

5.3. Comparison of sampling techniques342

The investigation of the distribution of the key image over the tested datasets343

suggests that picking key images based on previous image matches results in a344

subset of images that better represents the complete set. In the following we com-345

pare the proposed method with other methods to pick key images of the Home 1346

dataset. To make the comparison as fair as possible we set the sampling density347

for each method such that the number of images-pairs that is compared is more or348
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equal to the number of image-pairs compared by the CDS method. Thus the CDS349

method will use less or equal the amount of computational time. All methods were350

used in the same hierarchical incremental data association scheme, described in351

Section 3.3.352

• The first method picks images randomly from the image set. During each353

iteration a new set is chosen with an average number of images equal to354

.063 times the number of images in the map.355

• The second method uses the odometry measurements to sample over dis-356

placements of the robot. After each 43 cm an image is added to the set of357

key images.358

• The third approach samples images over time. After each 3.8 seconds a359

mapped image is added to the set of key images.360

In Table 2 the CDS method is compared with these methods and the method361

of exhaustive data association. As can be seen the proposed CDS method out-362

performs all these sampling techniques. The set of key images is smallest for the363

proposed method. More importantly it finds by far the highest number of links,364

close to the number found by exhaustively searching. As a result the percentage365

of successful image comparisons (efficiency) is highest of all methods, including366

of course that of a full matching scheme. Although we did not investigate the367

number of mismatches that were made the percentage of successful comparisons368

does indicate that the proposed method is more robust against false positives of369

the image matching technique.370

5.4. Revisiting places371

In the office set the robot was driven twice over the same loop in the environ-372

ment. This can be seen clearly in the graph in Figure 5(a) and is also visible in373

the connectivity matrix in Figure 6(a) by the second diagonal parallel to the main374

diagonal.375

While mapping the environment, more and more images acquired at different376

positions are added to the dataset and thus the size of the set of key images grows.377

This is depicted in Figure 8. At image 1020 the robot finished its first loop in the378

environment and had a CDS size of 39 images. During the second traversal of the379

loop new images were matched with images taken in the previous loop, creating380

links between these images as shown in Figure 5(a). Because of these links only381
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Table 2: Comparison of the CDS method to different sampling approaches. The parameters of

the different sampling approaches were set to such values that the number of image comparisons

was equal to that of the CDS method. The CDS method finds the highest percentage of matches

(matches found by CDS divided by the matches found by Full) and, thus, also the highest percent-

age of image comparisons that result in a match (efficiency).

method key images matched % matches found efficiency

Full 1436 39,631 100% 4%

Random 92 28,243 71% 26%

Position 82 32,836 83% 29%

Time 77 33,685 85% 31%

CDS 65 38,397 97% 35%
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Figure 8: The number of nodes in the CDS, while the map of the office is growing. The vertical

dashed line indicates the beginning of the second traversal of the loop.
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a few extra nodes were added to the CDS during this second loop resulting in a382

total of 44 nodes in the final CDS (which are indicated in Figure 5(a)).383

Note that the set of 44 key images of the final map are not composed of the 39384

key images of the first loop and 5 extra images of the second loop. The optimal set385

of key images is determined for each new image that is added to the map. Images386

of the second loop might better represent images taken of a particular part of the387

environment, making images of the first loop redundant. In the office set the final388

CDS is composed of 11 images of the first loop and 33 of the second loop.389

Figure 8 also shows that in some occasions the number of nodes in the CDS390

decreases. This happens if a new image is added which matches already mapped391

images that did not match each other. This indicates that new images can represent392

an existing set of images better than the previous key images taken from the set.393

6. Conclusion394

In this paper we proposed an efficient data association method for view based395

SLAM. Our approach is based on the fact that we consider only a selection of396

the previously acquired images for matching new images. The selected set of397

representative images covers the complete set of previously acquired images and398

we can efficiently detect loops in the trajectory of the robot. We have shown that399

the problem of finding the minimal number of key images is equivalent to finding400

the smallest Connected Dominating Set (CDS).401

The experimental results show that our method leads to a more efficient distri-402

bution of key images. From areas in the environment that are harder to match, for403

example because of bad lighting conditions, more images are picked. In this way404

loop closure is much more robust, even if it occurs in such an area.405

The CDS method is built in a hierarchical data association scheme that incre-406

mentally builds a map without using any prior knowledge about the environment.407

The set of representative images is dynamic. After each newly acquired image a408

CDS is determined that best represents the set of images at that moment.409

The method is applied on four challenging datasets mostly acquired in real410

home environments. In all datasets our method finds approximately the same map411

as is formed in the “full” case that all images are used. However, only 13% of the412

computational time is used. The efficiency of our method (the number of matches413

divided by the number of image comparisons) is 35%, which is high compared414

with the full case (4%).415

When comparing our method with other known sampling techniques we found416

that our method outperforms these method because it results in a smaller set of key417
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images, while it finds much more matching image pairs in the same amount of418

computational time. Our method finds 97% of the matches that were found with419

a “full” methods while position and time based methods found less then 85%.420

Although in the experiments the CDS method was used stand alone, it could421

just as well be merged with other sampling techniques, for example using the422

navigation prior of a SLAM method. Also the efficiency of the CDS method could423

be even further improved by additionally using a more efficient image similarity424

method like the recently proposed hierarchical methods [11] or a bag-of-words425

methods that use training sets to learn how discriminative image features are [12].426

In the experiments we used image sets in the order of a few 1000 images.427

For such dataset sizes, exhaustive data association, used for evaluation, is still428

possible, though time consuming. Using the CDS method datasets can scale up429

by a factor 10. In [42] we used a SLAM system to build a map with more than430

10,000, implicitly using the CDS method for data association.431
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